蜜臀av性久久久久|国产免费久久精品99|国产99久久久久久免费|成人精品一区二区三区在线|日韩精品一区二区av在线|国产亚洲欧美在线观看四区|色噜噜综合亚洲av中文无码|99久久久国产精品免费播放器

<cite id="ygcks"><center id="ygcks"></center></cite>
  • 
    
  • <rt id="ygcks"></rt>
    <cite id="ygcks"></cite>
  • <li id="ygcks"><source id="ygcks"></source></li> <button id="ygcks"></button>
  • <button id="ygcks"></button>
    <button id="ygcks"><input id="ygcks"></input></button>
    
    
    <abbr id="ygcks"><source id="ygcks"></source></abbr>
    
    
    
     
    
    

    New potential drug target for Huntington's disease identified: study

    Source: Xinhua| 2018-01-13 05:34:16|Editor: pengying
    Video PlayerClose

    CHICAGO, Jan. 12 (Xinhua) -- A team of researchers from several universities and research institutions has identified a new drug target for treating Huntington's disease, an inherited fatal neurological disorder.

    The researchers started with a drug screen using a cell model of Huntington's disease. They individually tested thousands of small molecules, applying them to cells that expressed the toxic portion of the mutant protein.

    The screen pinpointed one small molecule, named NCT-504 that appeared to have the desired effect by inhibiting a specific enzyme in the cells: a lipid kinase called PIP4Kgamma, namely phosphatidylinositol-5-phosphate 4-kinase, type II gamma.

    As a lipid kinase inhibitor, NCT-504 decreases the effect of the PIP4Kgamma enzyme in the cell. When the activity PIP4Kgamma was suppressed, researchers noticed increased cellular levels of three lipids that are involved in an important process to clean up damaged proteins in cells, called autophagy.

    The increase in these three lipids may account for an observed increase in autophagic activity, which in turn may be improving the cells' ability to clear out the protein aggregates that cause Huntington's disease.

    "We predicted it would impact one of the lipids, but it turned out that it was also elevating two other lipids that we have studied extensively," said Lois Weisman, a professor of cell and developmental biology at the University of Michigan (UM) Medical School.

    The researchers then tested this genetic model in fruit flies to see if the enzyme could have the same effect in a living organism. They decreased activity of PIP4Kgamma in fruit flies that had the Huntington's disease mutation, and saw a decrease in the effects of two fly models of Huntington's disease.

    "What's most exciting here is that not only can the animals tolerate the lack of this enzyme, but it's actually making them better," Weisman said.

    "This very open, basic-research type of screen was key to this finding," Weisman said. "And based on the mild increase in autophagy that we saw in the cell-based models, we think it might be important for other neurodegenerative diseases as well, including Alzheimer's."

    In the next step, the researchers will test the model in mammals and determine whether a decrease in this enzyme can deter Huntington's disease in more complex organisms.

    The findings was published in the journal eLife in December.

    TOP STORIES
    EDITOR’S CHOICE
    MOST VIEWED
    EXPLORE XINHUANET
    010020070750000000000000011100001368919511
    靖远县| 蒙阴县| 石首市| 钟祥市| 乌兰察布市| 蓝山县| 广昌县| 德格县| 新和县| 鹤岗市| 临夏市| 灵寿县| 托克托县| 青阳县| 太原市| 泾源县| 修武县| 藁城市| 钦州市| 大丰市| 清苑县| 分宜县| 高阳县| 固原市| 尚义县| 抚远县| 孝感市| 枣庄市| 桑日县| 正定县| 酒泉市| 建德市| 肃宁县| 关岭| 阳信县| 沾化县| 姚安县| 开阳县| 邵阳县| 邛崃市| 龙泉市|