蜜臀av性久久久久|国产免费久久精品99|国产99久久久久久免费|成人精品一区二区三区在线|日韩精品一区二区av在线|国产亚洲欧美在线观看四区|色噜噜综合亚洲av中文无码|99久久久国产精品免费播放器

Chinese scientists develop battery operable at extreme low temperature

Source: Xinhua| 2018-03-01 02:42:57|Editor: yan
Video PlayerClose

WASHINGTON, Feb. 28 (Xinhua) -- Chinese researchers have developed a battery with eco-friendly organic compound electrodes that can function at minus 70 degrees Celsius, far colder than the temperature at which lithium-ion batteries lose most of their ability to conduct and store energy.

The findings, published Wednesday in the journal Joule, could aid engineers in developing technology suited to withstand the most frigid regions on Earth or the coldest reaches of outer space.

Most of previous batteries perform at only 50 percent of their optimal level when the temperature hits minus 20 degrees Celsius, and by minus 40 degrees Celsius, lithium-ion batteries only have about 12 percent of their room temperature capacity.

This can be severely limiting when it comes to operating batteries in space, where temperatures can dip to minus 157 degrees Celsius, or in parts of Canada and Russia, where temperatures can be lower than minus 50 degrees Celsius.

Chinese researchers have found a design that can function even where other batteries might fail.

Xia Yongyao, a battery researcher at Fudan University said: "It is well known that both the electrolyte (the chemical medium that carries ions between electrodes) and electrodes (the positively charged cathode and negatively charged anode) have great influence on the battery performance."

When it gets cold, the conventional electrolytes that lithium-ion batteries often use become sluggish conductors and the electrochemical reactions that occur at the interface of the electrolyte and the electrode struggle to continue.

Xia's team experimented with using an ethyl acetate-based electrolyte, which has a low freezing point that enables it to conduct a charge even at extremely low temperatures.

For the electrodes, they used two organic compounds, PTPAn cathode and PNTCDA anode. Unlike the electrodes used in lithium-ion batteries, these organic compounds don't rely on intercalation, the process of continuously integrating ions into their molecular matrix, which slows down as the temperature drops.

"Compared to the transition-metal-containing electrodes materials in conventional lithium-ion batteries, organic materials are abundant, inexpensive, and environmentally friendly," Xia said.

He estimated the price of the electrode materials at about one third of the price of electrodes in a lithium-ion battery.

However, the battery will still require some tweaking before it is ready to leave the lab, because its energy per unit mass is still low compared with commercialized lithium-ion batteries, and the assembly process needs to be further optimized.

TOP STORIES
EDITOR’S CHOICE
MOST VIEWED
EXPLORE XINHUANET
010020070750000000000000011105521370068111
右玉县| 茌平县| 青川县| 阿勒泰市| 瑞丽市| 祁东县| 泰顺县| 大渡口区| 甘洛县| 上虞市| 读书| 北川| 乌拉特后旗| 博乐市| 赣州市| 孟连| 台东市| 哈巴河县| 华亭县| 伊春市| 宝兴县| 新民市| 姜堰市| 诸暨市| 江孜县| 民勤县| 成安县| 乌恰县| 乃东县| 东乡县| 会昌县| 鄢陵县| 龙泉市| 密云县| 类乌齐县| 徐闻县| 巫溪县| 衡东县| 蚌埠市| 中江县| 中宁县|