蜜臀av性久久久久|国产免费久久精品99|国产99久久久久久免费|成人精品一区二区三区在线|日韩精品一区二区av在线|国产亚洲欧美在线观看四区|色噜噜综合亚洲av中文无码|99久久久国产精品免费播放器

U.S., Chinese scientists develop diatom-like nanostructures

Source: Xinhua| 2018-07-17 16:52:43|Editor: Xiang Bo
Video PlayerClose

LOS ANGELES, July 16 (Xinhua) -- Scientists from the United States and China have designed a range of diatom-like nanostructures, which may ultimately have far-reaching applications in new optical systems, semiconductor nanolithography, nano-electronics, nano-robotics and medical applications, including drug delivery.

Diatoms are tiny, unicellular creatures, inhabiting oceans, lakes, rivers, and soils. Through their respiration, they produce close to a quarter of the oxygen on earth, nearly as much as the world's tropical forests. In addition to their ecological success across the planet, they have a number of remarkable properties.

To achieve a range of diatom-like nanostructures, researchers borrowed techniques used by naturally-occurring diatoms to deposit layers of silica, the primary constituent in glass, in order to grow their intricate shells, according to a new research, published on Monday in the advanced online of the journal Nature.

Using a technique known as DNA origami, scientists from Arizona State University (ASU) led by professor Hao Yan, in collaboration with researchers from the Shanghai Institute of Applied Physics of the Chinese Academy of Sciences and Shanghai Jiaotong University led by professor Chunhai Fan, designed nano-scale platforms of various shapes to which particles of silica, drawn by an electrical charge, could stick.

The new research demonstrates that silica deposition can be effectively applied to synthetic, DNA-based architectures, improving their elasticity and durability.

"We demonstrated that the right chemistry can be developed to produce DNA-silica hybrid materials that faithfully replicate the complex geometric information of a wide range of different DNA origami scaffolds. Our findings established a general method for creating biomimetic silica nanostructures," Yan was quoted as saying in the university's press release.

The research opens a pathway for nature-inspired innovations in nanotechnology in which DNA architectures act as templates that may be coated with silica or perhaps other inorganic materials, including calcium phosphate, calcium carbonate, ferric oxide or other metal oxides, yielding unique properties, researchers say.

TOP STORIES
EDITOR’S CHOICE
MOST VIEWED
EXPLORE XINHUANET
010020070750000000000000011100001373307821
长白| 滨海县| 新龙县| 麻阳| 吉林市| 台北市| 汝州市| 临夏县| 淄博市| 博爱县| 兴安盟| 龙游县| 株洲县| 太和县| 武冈市| 嵊州市| 类乌齐县| 景洪市| 东至县| 册亨县| 蚌埠市| 芜湖县| 周至县| 汽车| 郯城县| 紫云| 凌云县| 和政县| 香河县| 清原| 长海县| 如东县| 彰武县| 崇左市| 德兴市| 阿拉尔市| 元江| 沙湾县| 营山县| 铜梁县| 登封市|