蜜臀av性久久久久|国产免费久久精品99|国产99久久久久久免费|成人精品一区二区三区在线|日韩精品一区二区av在线|国产亚洲欧美在线观看四区|色噜噜综合亚洲av中文无码|99久久久国产精品免费播放器

Scientists identify effective new material used in solar cells

Source: Xinhua| 2018-09-28 00:50:14|Editor: Li Xia
Video PlayerClose

WASHINGTON, Sept. 27 (Xinhua) -- American researchers may find a new material that allows more efficient conversion of sunlight into electricity than the traditional silicon, which can lead to next-generation solar cells in coming years.

The study published on Thursday in the journal Chem revealed the unique properties of these inexpensive and quick-to-produce halide perovskites.

"The construction of silicon solar cells is complex and hard to scale-up to the level that would be needed for them to generate even 10 percent of our total demand for electricity," said John Asbury, associate professor of chemistry at Penn State and senior author of the study.

The researchers focused on materials that could be processed using a technique called roll-to-roll manufacturing, a technique similar to those used to print newspapers that enables low-cost, high-volume production.

Halide perovskites seem to have a unique tolerance for imperfections in their structures that allow them to efficiently convert sunlight into electricity, according to Asbury.

The researchers used ultrafast infrared imaging technology to investigate how the structure and composition of these materials influence their ability to convert sunlight into electricity.

They found that halide perovskites had a unique ability to maintain their crystalline structure even while the atoms in their crystals underwent unusually large-scale vibrational motion.

"Such large-scale atomic motions typically lead to a loss of crystalline structure in other materials, creating imperfections," said Asbury.

"But with halide perovskites, researchers can chemically substitute electronically charged atoms in the material to tune the amplitudes of such atomic scale motions. This will allow us to improve the performance and stability of halide perovskite materials," said Asbury.

Asbury admitted that the material often contained toxic elements like lead and are not that stable to replace silicon solar cells. But it could guide the development of next generation perovskite materials that are more stable and that contain less toxic elements such as tin instead of lead.

TOP STORIES
EDITOR’S CHOICE
MOST VIEWED
EXPLORE XINHUANET
010020070750000000000000011100001374974011
广东省| 满城县| 修水县| 湘潭市| 陇西县| 城市| 南平市| 扶沟县| 福泉市| 临武县| 襄垣县| 呈贡县| 保定市| 乌海市| 额济纳旗| 正镶白旗| 兴宁市| 许昌县| 恩施市| 陵川县| 新化县| 黄大仙区| 麦盖提县| 凌源市| 永登县| 东阳市| 长垣县| 遵化市| 绥芬河市| 三台县| 轮台县| 新宁县| 合阳县| 南丰县| 青铜峡市| 嘉义县| 长葛市| 綦江县| 闵行区| 昌宁县| 耒阳市|